Data-Driven Modelling of Non-Domestic Buildings Energy Performance

Supporting Building Retrofit Planning

,

  • Springer

  • Date de publication : 2021-01-15


0%

 COMMENCER GRATUITEMENT

137,14 l'ebook
acheter l'ebook


Détails du livre

Titre : Data-Driven Modelling of Non-Domestic Buildings Energy Performance
Pages : 153
Collection : n.c
Parution : 2021-01-15
Éditeur : Springer
EAN papier : 9783030647506
À propos du livre



This book outlines the data-driven modelling of building energy performance to support retrofit decision-making. It explains how to determine the appropriate machine learning (ML) model, explores the selection and expansion of a reasonable dataset and discusses the extraction of relevant features and maximisation of model accuracy.
This book develops a framework for the quick selection of a ML model based on the data and application. It also proposes a method for optimising ML models for forecasting buildings energy loads by employing multi-objective optimisation with evolutionary algorithms. The book then develops an energy performance prediction model for non-domestic buildings using ML techniques, as well as utilising a case study to lay out the process of model development. Finally, the book outlines a framework to choose suitable artificial intelligence methods for modelling building energy performances.
This book is of use to both academics and practising energy engineers, as it provides theoretical and practical advice relating to data-driven modelling for energy retrofitting of non-domestic buildings.

Format EPUB - Nb pages copiables : 1 - Nb pages imprimables : 15 - Poids : 14500 Ko - - Prix : 139,09 € - EAN : 9783030647513

Pick and Read

Une solution de paiement à la page lue.

Une lecture en streaming, pour « lire en maîtrisant son budget ».




Paiement sécurisé


  • Newsletter

  • OK