Dynamic Parameter Adaptation for Meta-Heuristic Optimization Algorithms Through Type-2 Fuzzy Logic

, , ,



0%

 COMMENCER GRATUITEMENT

52,74 l'ebook
acheter l'ebook


Détails du livre

Titre : Dynamic Parameter Adaptation for Meta-Heuristic Optimization Algorithms Through Type-2 Fuzzy Logic
Pages : 105
Collection : SpringerBriefs in Applied Sciences and Technology
Parution : 2018-03-14
Éditeur : Springer
EAN papier : 9783319708508
À propos du livre



In this book, a methodology for parameter adaptation in meta-heuristic op-timization methods is proposed. This methodology is based on using met-rics about the population of the meta-heuristic methods, to decide through a fuzzy inference system the best parameter values that were carefully se-lected to be adjusted. With this modification of parameters we want to find a better model of the behavior of the optimization method, because with the modification of parameters, these will affect directly the way in which the global or local search are performed.
Three different optimization methods were used to verify the improve-ment of the proposed methodology. In this case the optimization methods are: PSO (Particle Swarm Optimization), ACO (Ant Colony Optimization) and GSA (Gravitational Search Algorithm), where some parameters are se-lected to be dynamically adjusted, and these parameters have the most im-pact in the behavior of each optimization method.
Simulation results show that the proposed methodology helps to each optimization method in obtaining better results than the results obtained by the original method without parameter adjustment.

Format PDF - Nb pages copiables : 1 - Nb pages imprimables : 10 - Poids : 2714 Ko - - Prix : 52,74 € - EAN : 9783319708515
Format EPUB - Nb pages copiables : 1 - Nb pages imprimables : 10 - Poids : 1341 Ko - - Prix : 52,74 € - EAN : 9783319708515

Pick and Read

Une solution de paiement à la page lue.

Une lecture en streaming, pour « lire en maîtrisant son budget ».




Paiement sécurisé


  • Newsletter

  • OK