Robust Representation for Data Analytics

Models and Applications

,



0%

 COMMENCER GRATUITEMENT

116,04 l'ebook
acheter l'ebook


Détails du livre

Titre : Robust Representation for Data Analytics
Pages : 224
Collection : Advanced Information and Knowledge Processing
Parution : 2017-08-09
Éditeur : Springer
EAN papier : 9783319601755
À propos du livre

This book introduces the concepts and models of robust representation learning, and provides a set of solutions to deal with real-world data analytics tasks, such as clustering, classification, time series modeling, outlier detection, collaborative filtering, community detection, etc. Three types of robust feature representations are developed, which extend the understanding of graph, subspace, and dictionary.
Leveraging the theory of low-rank and sparse modeling, the authors develop robust feature representations under various learning paradigms, including unsupervised learning, supervised learning, semi-supervised learning, multi-view learning, transfer learning, and deep learning. Robust Representations for Data Analytics covers a wide range of applications in the research fields of big data, human-centered computing, pattern recognition, digital marketing, web mining, and computer vision.

Format EPUB - Nb pages copiables : 2 - Nb pages imprimables : 22 - Poids : 2970 Ko - - Prix : 116,04 € - EAN : 9783319601762

Pick and Read

Une solution de paiement à la page lue.

Une lecture en streaming, pour « lire en maîtrisant son budget ».




Paiement sécurisé


  • Newsletter

  • OK