Multi-aspect Learning

Methods and Applications

,

  • Springer

  • Date de publication : 2023-07-27


0%

 COMMENCER GRATUITEMENT

158,24 l'ebook
acheter l'ebook


Détails du livre

Titre : Multi-aspect Learning
Pages : 184
Collection : n.c
Parution : 2023-07-27
Éditeur : Springer
EAN papier : 9783031335594
À propos du livre


This book offers a detailed and comprehensive analysis of multi-aspect data learning, focusing especially on representation learning approaches for unsupervised machine learning. It covers state-of-the-art representation learning techniques for clustering and their applications in various domains. This is the first book to systematically review multi-aspect data learning, incorporating a range of concepts and applications. Additionally, it is the first to comprehensively investigate manifold learning for dimensionality reduction in multi-view data learning. The book presents the latest advances in matrix factorization, subspace clustering, spectral clustering and deep learning methods, with a particular emphasis on the challenges and characteristics of multi-aspect data. Each chapter includes a thorough discussion of state-of-the-art of multi-aspect data learning methods and important research gaps. The book provides readers with the necessary foundational knowledge to apply these methods to new domains and applications, as well as inspire new research in this emerging field.

Format EPUB - Nb pages copiables : 1 - Nb pages imprimables : 18 - Poids : 20736 Ko - - Prix : 160,49 € - EAN : 9783031335600

Pick and Read

Une solution de paiement à la page lue.

Une lecture en streaming, pour « lire en maîtrisant son budget ».




Paiement sécurisé


  • Newsletter

  • OK