Representation in Machine Learning

,



0%

 COMMENCER GRATUITEMENT

52,74 l'ebook
acheter l'ebook


Détails du livre

Titre : Representation in Machine Learning
Pages : 93
Collection : SpringerBriefs in Computer Science
Parution : 2023-01-20
Éditeur : Springer
EAN papier : 9789811979071
À propos du livre



This book provides a concise but comprehensive guide to representation, which forms the core of Machine Learning (ML). State-of-the-art practical applications involve a number of challenges for the analysis of high-dimensional data. Unfortunately, many popular ML algorithms fail to perform, in both theory and practice, when they are confronted with the huge size of the underlying data. Solutions to this problem are aptly covered in the book. In addition, the book covers a wide range of representation techniques that are important for academics and ML practitioners alike, such as Locality Sensitive Hashing (LSH), Distance Metrics and Fractional Norms, Principal Components (PCs), Random Projections and Autoencoders. Several experimental results are provided in the book to demonstrate the discussed techniques’ effectiveness.

Format EPUB - Nb pages copiables : 0 - Nb pages imprimables : 9 - Poids : 24320 Ko - - Prix : 52,74 € - EAN : 9789811979088

Pick and Read

Une solution de paiement à la page lue.

Une lecture en streaming, pour « lire en maîtrisant son budget ».




Paiement sécurisé


  • Newsletter

  • OK