Latent Factor Analysis for High-dimensional and Sparse Matrices

A particle swarm optimization-based approach

,



0%

 COMMENCER GRATUITEMENT

47,46 l'ebook
acheter l'ebook


Détails du livre

Titre : Latent Factor Analysis for High-dimensional and Sparse Matrices
Pages : 92
Collection : SpringerBriefs in Computer Science
Parution : 2022-11-15
Éditeur : Springer
EAN papier : 9789811967023
À propos du livre

Latent factor analysis models are an effective type of machine learning model for addressing high-dimensional and sparse matrices, which are encountered in many big-data-related industrial applications. The performance of a latent factor analysis model relies heavily on appropriate hyper-parameters. However, most hyper-parameters are data-dependent, and using grid-search to tune these hyper-parameters is truly laborious and expensive in computational terms. Hence, how to achieve efficient hyper-parameter adaptation for latent factor analysis models has become a significant question.
This is the first book to focus on how particle swarm optimization can be incorporated into latent factor analysis for efficient hyper-parameter adaptation, an approach that offers high scalability in real-world industrial applications.
The book will help students, researchers and engineers fully understand the basic methodologies of hyper-parameter adaptation via particle swarm optimization in latent factor analysis models. Further, it will enable them to conduct extensive research and experiments on the real-world applications of the content discussed.

Format EPUB - Nb pages copiables : 0 - Nb pages imprimables : 9 - Poids : 19180 Ko - - Prix : 47,46 € - EAN : 9789811967030

Pick and Read

Une solution de paiement à la page lue.

Une lecture en streaming, pour « lire en maîtrisant son budget ».




Paiement sécurisé


  • Newsletter

  • OK