Mathematical Foundations of Nature-Inspired Algorithms

,


  >  
  >  
  >  

0%

 COMMENCER GRATUITEMENT

63,29 l'ebook
acheter l'ebook


Détails du livre

Titre : Mathematical Foundations of Nature-Inspired Algorithms
Pages : 107
Collection : SpringerBriefs in Optimization
Parution : 2019-05-08
Éditeur : Springer
EAN papier : 9783030169350
À propos du livre



This book presents a systematic approach to analyze nature-inspired algorithms. Beginning with an introduction to optimization methods and algorithms, this book moves on to provide a unified framework of mathematical analysis for convergence and stability. Specific nature-inspired algorithms include: swarm intelligence, ant colony optimization, particle swarm optimization, bee-inspired algorithms, bat algorithm, firefly algorithm, and cuckoo search. Algorithms are analyzed from a wide spectrum of theories and frameworks to offer insight to the main characteristics of algorithms and understand how and why they work for solving optimization problems. In-depth mathematical analyses are carried out for different perspectives, including complexity theory, fixed point theory, dynamical systems, self-organization, Bayesian framework, Markov chain framework, filter theory, statistical learning, and statistical measures. Students and researchers in optimization, operations research, artificial intelligence, data mining, machine learning, computer science, and management sciences will see the pros and cons of a variety of algorithms through detailed examples and a comparison of algorithms.

Format EPUB - Nb pages copiables : 1 - Nb pages imprimables : 10 - Poids : 2703 Ko - - Prix : 63,29 € - EAN : 9783030169367

Pick and Read

Une solution de paiement à la page lue.

Une lecture en streaming, pour « lire en maîtrisant son budget ».




Paiement sécurisé


  • Newsletter

  • OK