Robust Subspace Estimation Using Low-Rank Optimization

Theory and Applications

,



0%

 COMMENCER GRATUITEMENT

52,74 l'ebook
acheter l'ebook


Détails du livre

Titre : Robust Subspace Estimation Using Low-Rank Optimization
Pages : 114
Collection : The International Series in Video Computing
Parution : 2014-03-24
Éditeur : Springer
EAN papier : 9783319041834
À propos du livre


Various fundamental applications in computer vision and machine learning require finding the basis of a certain subspace. Examples of such applications include face detection, motion estimation, and activity recognition. An increasing interest has been recently placed on this area as a result of significant advances in the mathematics of matrix rank optimization. Interestingly, robust subspace estimation can be posed as a low-rank optimization problem, which can be solved efficiently using techniques such as the method of Augmented Lagrange Multiplier. In this book, the authors discuss fundamental formulations and extensions for low-rank optimization-based subspace estimation and representation. By minimizing the rank of the matrix containing observations drawn from images, the authors demonstrate  how to solve four fundamental computer vision problems, including video denosing, background subtraction, motion estimation, and activity recognition.

Format EPUB - Nb pages copiables : 1 - Nb pages imprimables : 11 - Poids : 3666 Ko - - Prix : 52,74 € - EAN : 9783319041841

Pick and Read

Une solution de paiement à la page lue.

Une lecture en streaming, pour « lire en maîtrisant son budget ».




Paiement sécurisé


  • Newsletter

  • OK