Homological Mirror Symmetry and Tropical Geometry


  >  
  >  
  >  

0%

 COMMENCER GRATUITEMENT

105,49 l'ebook
acheter l'ebook


Détails du livre

Titre : Homological Mirror Symmetry and Tropical Geometry
Pages : 436
Collection : Lecture Notes of the Unione Matematica Italiana
Parution : 2014-10-07
Éditeur : Springer
EAN papier : 9783319065137
À propos du livre

The relationship between Tropical Geometry and Mirror Symmetry goes back to the work of Kontsevich and Y. Soibelman (2000), who applied methods of non-archimedean geometry (in particular, tropical curves) to Homological Mirror Symmetry. In combination with the subsequent work of Mikhalkin on the “tropical” approach to Gromov-Witten theory and the work of Gross and Siebert, Tropical Geometry has now become a powerful tool. Homological Mirror Symmetry is the area of mathematics concentrated around several categorical equivalences connecting symplectic and holomorphic (or algebraic) geometry. The central ideas first appeared in the work of Maxim Kontsevich (1993). Roughly speaking, the subject can be approached in two ways: either one uses Lagrangian torus fibrations of Calabi-Yau manifolds (the so-called Strominger-Yau-Zaslow picture, further developed by Kontsevich and Soibelman) or one uses Lefschetz fibrations of symplectic manifolds (suggested by Kontsevich and further developed by Seidel). Tropical Geometry studies piecewise-linear objects which appear as “degenerations” of the corresponding algebro-geometric objects.

Format EPUB - Nb pages copiables : 4 - Nb pages imprimables : 43 - Poids : 6758 Ko - - Prix : 105,49 € - EAN : 9783319065144

Pick and Read

Une solution de paiement à la page lue.

Une lecture en streaming, pour « lire en maîtrisant son budget ».




Paiement sécurisé


  • Newsletter

  • OK