On Statistical Pattern Recognition in Independent Component Analysis Mixture Modelling



0%

 COMMENCER GRATUITEMENT

94,94 l'ebook
acheter l'ebook


Détails du livre

Titre : On Statistical Pattern Recognition in Independent Component Analysis Mixture Modelling
Pages : 186
Collection : Springer Theses
Parution : 2012-07-20
Éditeur : Springer
EAN papier : 9783642307515
À propos du livre

A natural evolution of statistical signal processing, in connection with the progressive increase in computational power, has been exploiting higher-order information. Thus, high-order spectral analysis and nonlinear adaptive filtering have received the attention of many researchers. One of the most successful techniques for non-linear processing of data with complex non-Gaussian distributions is the independent component analysis mixture modelling (ICAMM). This thesis defines a novel formalism for pattern recognition and classification based on ICAMM, which unifies a certain number of pattern recognition tasks allowing generalization. The versatile and powerful framework developed in this work can deal with data obtained from quite different areas, such as image processing, impact-echo testing, cultural heritage, hypnograms analysis, web-mining and might therefore be employed to solve many different real-world problems.

Format EPUB - Nb pages copiables : 1 - Nb pages imprimables : 18 - Poids : 3656 Ko - - Prix : 94,94 € - EAN : 9783642307522

Pick and Read

Une solution de paiement à la page lue.

Une lecture en streaming, pour « lire en maîtrisant son budget ».




Paiement sécurisé


  • Newsletter

  • OK